An Approach to Imbalanced Data Sets Based on Changing Rule Strength

نویسندگان

  • Jerzy W. Grzymala-Busse
  • Linda K. Goodwin
  • Witold J. Grzymala-Busse
  • Xinqun Zheng
چکیده

This paper describes experiments with a challenging data set describing preterm births. The data set, collected at the Duke University Medical Center, was large and, at the same time, many attribute values were missing. However, the main problem was that only 20.7% of the total number of cases represented the important preterm birth class. Thus the data set was imbalanced. For comparison, we include results of experiments on another imbalanced data set, the wellknown breast cancer data set. Our approach to dealing with this imbalanced data set was to induce a rule set using our standard procedure: the LEM2 algorithm of the LERS rule induction system and then increase the rule strength for all rules describing preterm births by multiplying all such rule strengths by the same number called a strength multiplier. The rules strength for any rule describing the majority class, fullterm birth, remained unchanged. The optimal strength multiplier was determined experimentally using our optimality criterion: the maximum of the sum of sensitivity and specificity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

ارائه‌روش جدید مبتنی‌بر برنامه‌نویسی ژنتیک برای وزن‌دهی قوانین فازی در طبقه‌بندی نامتوازن

In classification problems, we often encounter datasets with different percentage of patterns (i.e. classes with a high pattern percentage and classes with a low pattern percentage). These problems are called “classification Problems with imbalanced data-sets”. Fuzzy rule based classification systems are the most popular fuzzy modeling systems used in pattern classification problems. Rule weights...

متن کامل

INDUCING VALUABLE RULES FROM IMBALANCED DATA: THE CASE OF AN IRANIAN BANK EXPORT LOANS

<span style="color: #000000; font-family: Tahoma, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: -webkit-left; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; display: inline !important; float: none; ba...

متن کامل

INDUCING VALUABLE RULES FROM IMBALANCED DATA: THE CASE OF AN IRANIAN BANK EXPORT LOANS

<span style="color: #000000; font-family: Tahoma, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: -webkit-left; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; display: inline !important; float: none; ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004